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Elliptic curves



Hilbert’s tenth problem, 1900

Let f (x1, . . . , xn) = 0 be a polynomial equation with coefficients in
Z. Can we find an algorithm that determines if this equation has
integer solutions?

Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson
proved that such an algorithm does not exist. (1970)



Plimpton 332

1192 + 1202 = 1692

Figure 1: Plimpton 332



Degree 1

ax + by = c

The equation has integer solutions if and only if the greatest
common divisor of a and b, gcd(a, b), divides the integer c.

Example: 2x + y = 1. Since gcd(2, 1) = 1 divides 1, the equation
has infinite solutions: x = λ, y = 1− 2λ.
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Degree 2

ax2 + bxy + cy2 + dx + ey + f = 0

Hasse-Minkowski theorem
A quadratic form has a solution in Q if and only if it has a solution
over R and over Qp for every prime p.

For example, genus 0 curves C have either infinite rational points or
none.



−4 −2 2 4

−2

2

x

y

−1 1 2 3 4

−4

−2

2

4

x

y

−4 −2 2 4

−4

−2

2

4

x

y

Figure 2: Ellipse, parabola, hyperbola



Degree 3

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx + iy + j = 0

Counterexamples!!
I 2y2 = x4 − 17 (Carl-Erik Lind, 1940)
I 3x3 + 4y3 + 5z3 = 0 (Ernst S. Selmer, 1951)

For example, genus 1 curves C have either infinitely-many rational
points, or finitely-many, or none.
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Figure 3: Smooth curve, cusp, node



Degree n > 3

Faltings’ theorem, 1983
Let C be a curve of genus n > 1. Then the set of rational points
C(Q) is finite.

Summarizing, depending on the genus, the set of rational points can
be...

Genus 0 Genus 1 Genus >1
∅ ∅ ∅
- Finite Finite

Infinite Infinite -



Elliptic curve
An elliptic curve E defined over a field K is an algebraic curve such
that:
I it is smooth,
I it is projective,
I it has genus 1,
I there is a marked point on E , denoted O.

We can write them in Weierstrass form:

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6



Figure 4: Complex torus... and elliptic curve!



If E is defined over a field K of characteristic different from 2 and 3,
we can write E in short Weierstrass form:

E : y2 = x3 + Ax + B

Goal: understanding rational points on elliptic curves!

Figure 5: y2 = x3 + 4x . Rational points: (0, 0), (2, 4), (2,−4).



Group structure
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Mordell-Weil theorem, 1922
The group of rational points E (Q) of an elliptic curve E defined
over Q is a finitely generated abelian group and we can write it as
follows:

E (Q) = E (Q)tors ⊕ ZRE/Q

Theorem. Mazur, 1977
The torsion group E (Q)tors is isomorphic to one of the following 15
groups:
I Z/NZ, for N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or
I Z/2Z⊕ Z/NZ, for N = 2, 4, 6, 8.

Moreover, all these possibilities happen!



Conjecture
There exists elliptic curves E/Q of arbitrarily large rank.

Elliptic curve of rank, at least, 28 (Elkies, 2006):

y2 + xy + y = x3 − x2

−20067762415575526585033208209338542750930230312178956502x

+344816117950305564670329856903907203748559443593191803612

66008296291939448732243429



Congruent number problem

We say that an integer n > 0 is a congruent number if it is the area
of a right triangle whose sides are rational numbers.
Can we find an algorithm that determines if a number is congruent
or not?
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Figure 6: 6 is congruent



Figure 7: 157 is congruent!



We start from:
a2 + b2 = c2,

ab
2 = n

Set the following change of variables:

x = nb
c − a , y = 2n2

c − a

and we obtain this equation:

y2 = x3 − n2x , y 6= 0

Conversely, we can set:

a = x2 − n2

y , b = 2nx
y , c = x2 + n2

y

and we can check these a, b, c verify the conditions.



{(a, b, c) : a2 + b2 = c2,
ab
2 = n} ↔ {(x , y) : y2 = x3 − n2x , y 6= 0}

(a, b, c) 7→
(

nb
c − a ,

2n2

c − a

)
(
x2 − n2

y ,
2nx
y ,

x2 + n2

y

)
← [ (x , y)



Tunnell’s theorem, 1983
Let n > 0 square-free integer. We define the following quantities:

An = #{(x , y , z) ∈ Z3 : n = 2x2 + y2 + 32z2}
Bn = #{(x , y , z) ∈ Z3 : n = 2x2 + y2 + 8z2}
Cn = #{(x , y , z) ∈ Z3 : n = 8x2 + 2y2 + 64z2}
Dn = #{(x , y , z) ∈ Z3 : n = 8x2 + 2y2 + 16z2}

Suppose n is congruent. Then
I If n is odd, 2An = Bn.
I Si n is even, 2Cn = Dn.

Conversely, if the BSD conjecture is true for elliptic curves of the
form y2 = x3 − n2x then this quantities would imply that n is
congruent.



Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve defined over Q, let L(E , s) be its
L-function. Then,
I L(E , s) has a zero at s = 1, and the order of vanishing is the

(algebraic) rank RE of E .
I The residue of L(E , s) at s = 1 is given by:

lim
s→1

L(E , s)
(s − 1)RE

=
|X|·ΩE · Reg(E/Q) ·

∏
p cp

|Etors(Q)|2



Elliptic curves over Fp

For example, let E/Q be the elliptic curve:

E : y2 = x3 + x2 − 2x + 9

What happens if we want to consider it over finite fields Fp? For
p = 2, 3, 31 it is no longer an elliptic curve!
I In p = 2 it has bad additive reduction.
I In p = 3, 31 it has bad multiplicative reduction, and we

distinguish two cases:
I Split in p = 3.
I Non-split in p = 31.

I In the rest of primes p, it has good reduction.



Figure 8: y2 = x3 + x2 − 2x + 9 en Q



Figure 9: y2 = x3 + x2 − 2x + 9 en F67



L-functions

Riemann zeta function:

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

1
1− p−s

L-function for an elliptic curve E/Q:

L(E , s) =
∞∑

n=1

an
ns =

∏
p prime

1
Lp(p−s)

where an are the Fourier coefficients and Lp(p−s) is a local factor
that depends on the kind of reduction of E modulo p. Both of these
functions have analytic continuation to the whole complex plane
and satisfy a certain functional equation.



Fermat’s Last Theorem

The equation xn + yn = zn has no integer solutions with xyz 6= 0
for all n ≥ 3.

I Euler proved the case n = 3 in 1770.
I Fermat himself proved the case n = 4.
I Independently, Dirichlet and Legendre proved the case n = 5,

around 1825.
I Lamé proved the case n = 7 in 1839.

Therefore, note that it suffices to prove it for n = p prime greater
than 7.



In 1984, Frey obtained the following elliptic curve assuming that
there exists a solution (a, b, c):

E : y2 = x(x − ap)(x + bp)

and he proved certain properties of this curve. In particular, he
proved that it is semiestable.

In 1986, Serre y Ribet proved that if such curve exists, it can not be
"modular".

Finally, in 1995, Wiles and Taylor proved:

"Every semiestable elliptic curve defined over Q is modular."



Modular forms

Let z ∈ H where H denotes the upper half plane. A modular form f
of weight k is a complex function f : H → C satisfying:
I f is an holomorphic function on H,
I |f (z)| stays bounded as im(z)→ i∞.
I Modularity condition:

f
(az + b
cz + d

)
= (cz + d)k f (z)

for all ( a b
c d ) ∈ SL(2,Z).

Further, if the limit is zero, we say that f is a cusp form.



In particular, the modularity condition is equivalent to:

f (z + 1) = f (z), f (−1/z) = zk f (z)

Figure 10: Fundamental domain



Figure 11: Eisenstein series of weight 4 and 8.



Let q = e2πiz . We can write cusps form as Taylor expansions:

f (z) =
∞∑

n=1
anqn = a1q + a2q2 + . . .

and we can also define its L-function:

L(f , s) =
∞∑

n=1

an
ns

Further, under certain conditions, we can have an Euler product,
analytic continuation to the whole complex plane and functional
equation for cusp forms of even weight!



Taniyama-Shimura-Weil conjecture

An elliptic curve E defined over Q is modular if L(E , s) = L(f , s)
where f is a modular form.

Modularity theorem, 2001
Every elliptic curve E defined over Q is modular.

In fact, every elliptic curve E defined over Q corresponds to a cusp
form of weight 2.



The elliptic curve E and the cusp form (of weight 2) f (q)

E : y2 = x3 − x2 − 4x + 4, f (q) = q − q3 − 2q5 + q9 + O(q10)

share the following L-function:

L(E , s) = 1− 1
3s −

2
5s + 1

9s + 4
11s −

2
13s + . . .



LMFDB universe
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... and Salem!

Thank you so much!


